Решение задач

6.2.Квадратный трехчлен.Разложение на линейные множители

6.2 Разложение на линейные множители

Квадратный трехчлен можно разложить на линейные множители. 

 

Пример 1. Найти область определения функции

\(f(х) =\sqrt{ 16 — x^2} log_{2} (x^2 — 5x - 6)\).

Решение.

\(D(f):\)

1) \(16 — x^2≥0\)

2)  \(x^2- 5x+6>0\)

\(|x|≤4 \)

\((x — 2)(x — 3) > 0\)

 

 Ответ: \(-4 ≤ x < 2\),    \(3 < x≤  4\).

 

 

Рис. 15

 

380°. Найти все решения неравенства \((x + З)^2 < 5х + 11\) на отрезке \([—3; 0]\).

381° \( log_{8}\sqrt{\frac{2x+15}{2x^2+3}}  ≥0\).

382. Найти область определения функции

               \(f(x)=\frac{\sqrt{25-x^2}}{\sqrt{4х^2 + 6х + 8}}\)

383 Найти область определения функции \( f(x) = log_{-x} (12-х^2 -х)\).

384. Найти область определения функции \(f(х) = \sqrt{x^2 - 2х - 3} + log_{3+x} (9 - х^2)\).

385. \((1/4)^{\frac{4-x^2}{2} }< 8^x\).

386. . \(5^{4x^2 - 3X+\frac{I}{2}} < \frac{1}{5}^{-40x^2}\).

Популярные репетиторы:

Рейтинг 5 из 5: 45 отзывов
 
C самого истока своего продвижения по службе, я грезил собрать вместе пару моих основных интересов: Математику, Информатику и Обучение, когда еще учился в аспирантуре.

Инженер, математик для школьников и студентов, PhD, педагогический стаж более 15 лет, безотложно   подготовит к вступительному экзамену в ВУЗ по математике на 1 курс с помощью особо успешных ноу-хау по формированию памяти и ускорению мышления. Помощь в оформлении докладов.

Консультации по математическим пакетам Microsoft Mathematics, Mathematica и MathLab . На досуге программирует на Python, GO и Java. Участвует в международных академических симпозиумах ICML, WSDM и ACL . Некоторое время поработал в цифровой-компании по Spark и Нейронным сетям.

Занятия проводятся Локально в Москве м. Китай-город и по Viber. Опыт учителя по высшей математике для аспирантов более 20 лет. Более 320 учащихся  поступили «на бюджет» в ВУЗы Москвы: МАИ, МГТУ, Школа Анализа Данных Яндекса и ВШЭ и т.д.. 他說中國.

Запись на занятия

Ваше сообщение отправлено