Решение задач

18. 2.2 Числовые характеристики вариационных рядов. Теория вероятностей.

§2.2. Числовые характеристики вариационных рядов.
Аналогично числовым характеристикам в теории вероятностей / математическое ожидание, дисперсия / вводятся числовые характеристики в статистике.

I. Определение. Средней арифметической вариационного ряда называется сумма произведений всех вариантов на соответствующие им веса, деленная на сумму весов 

 

 

 

Замечание I. Введенное определение Ц) средней арифметической вариационного ряда полностью аналогично определению математического ожидания дискретной случайной величины /см.гл.1,§14 /
(2)

Пример 2.2.1  Вычислить среднее число обрывов нитей пряжи на ткацком станке за время -fc по следующим данным таблицы 2.1 :

Количество

Длина ткани

Частотность

обрывов X

(^частоты n-i)

pl~ юоо

0

34

0,034

I

157

0,157

2

214

0,214

3

253

0,253

4

151

0,151

5

III

ОДП

6

57

0.057

*

1*

0. 01 >

8

Р> о о €

42

 

 

 

Замечание I. Введенное определение (1) средней арифметической вариационного ряда полностью анАюгично определению математического ожидания дискретной случайной величины /см.гл.1,§14 /


Решение. Среднее, число обрывов равно средней арифметической вариационного рада. По формуле'(1) получим

 


2. Размах вариации. '

Простейшим измерителем вариации признака является размах вариации £ т.е. разность между наибольшим и наименьшим'вариантами. - X " X luit.

Например, размах вариации в примере I ,§1 равен:


3. Дисперсия вариационного рада.

Определение. Дисперсией (Г?1 вариационного рада называется средняя арифметическая квадратов отклонения вариантов от их средней арифметической -

 


Замечание 2.Введенное определение дисперсии вариационного ряда полностью аналогично понятию дисперсии дискретной случайной величины /\(м.гл.1,§14/. Роль значений случайной величины X -... Xu,] играют варианты Xi . Роль вероятностей играют частотности . pi - —
Определение. Средним квадратическим отклонением вариационного ряда называется величина

 

Пример 3. Вычислить дисперсию и среднеквадратическое отклонение следующего распределения рабочих предприятия по времени, затра-
чиваемому на обработку одной детали.
Время, затрачиваемое на обработку одной детали /мин./ Среднее значение интервала Число рабочих

 

 

Время, затрачива емо е на обработку одной детали /мин./

Среднее значение интервала

Число рабочих

2-4

3

42

4-6

\)2Г

73

6-8

7

154

8-10

9

205

10-12

II

26

 

 

Итого 500

 

 

Среднеквадратическое отклонение равно

 


Итого 500

стр.43

 

 

 

Решение.

 

 

Сначала вычисляем среднюю арифметическую вариационного ряда приняв 3а значения признака X; середины интервалов:

 

 

Дисперсия равна:

 

Среднеквадратическое отклонение равно

 

 

 

 

Популярные репетиторы:

Рейтинг 5 из 5: 45 отзывов
 
C самого начала своей карьеры, я грезил собрать воедино пару моих основных интересов: Математику, Информатику и Обучение, когда еще обучался в аспирантуре.

Безупречный математик для школьников и студентов, кандидат физико математических наук, докторант, педагогический стаж более 19 лет, (по)спешно   подготовит без посредников контрольной работе по математике в 9 класс с помощью интересных способов по развитию памяти и ускорению умственной работы . 

Консультирование по математическим пакетам Maxima, MathLab и Mathematica . Участвует в ведущих академических конференциях ICCV, ACL и ECCV . Некоторое время поработал в стартапе по Перцептронам и Нейросетям. Свободно программирует на Java, Lisp и Rast.

Опыт репетитора по высшей математике для студентов более 20 лет. Занятия проводятся по Google Hangout и локально в Москве м. Китай-город. Более 320 учащихся  поступили «на бюджет» в ВУЗы Москвы: Школа Анализа Данных Яндекса, ФИ, ВШЭ и МГТУ и многие другие. Speaks to English.

Запись на занятия

Ваше сообщение отправлено