Решение задач

Найти корень иррационального уравнения: √5+y = √2y-6

Задача: Найти  корень иррационального уравнения:

\(\sqrt{5+y} = \sqrt{2y-6}\)

Решение:

1)Найдем для \(y\) область допустимых значений (ОДЗ):

\(5+y≥0     2y-6≥0\)

 \(y≥-5     y≥3\)

ОДЗ: \( y≥3\)

2)Устраним радикалы в левой и правой частях уравнения:

Возведем в квадрат 

\((\sqrt{√5+y})^2 = (\sqrt{2y-6})^2\)

После возведения в квадрат получим

\(5+y = 2y-6\)

Решим линейное уравнение:

\(y -11 = 0\)

Получим корень

\(y = 11\)

Данное решение удовлетворяет ОДЗ. 

3)Проверим, что решение является правильным:

В исходное уравнение \(√5+y = √2y-6\) подставим 11 для y

\(√5+(11) = √2•(11)-6\)

упростим

\(√16 = 4\) 

получим

\(y = 11\) 

Проверка показала,что решение правильно !

Ответ:  \(y = 11\)

 

 

Популярные репетиторы:

Рейтинг 5 из 5: 45 отзывов
 
C самого начала своей карьеры, я грезил собрать воедино два моих основных увлечений: Математику, Информатику и Обучение, когда еще учился в аспирантуре.

Инженер, математик для студентов и школьников, кандидат физико математических наук, докторант, педагогический стаж более 18 лет, не откладывая   подготовит без посредников учащихся к экзамену в институте по математике в 9 класс с помощью особо успешных способов по развитию памяти и ускорению мышления. 

Впечатляюще потрудился по развитию в интернет-компании по Information Retrieval и Машинному обучению. Консультирование по математическим пакетам MathCad, JupyterLab и Microsoft Mathematics . Участвует в ведущих академических конференциях WWW, ICCV и ECCV . Свободно "кодит" на Java, Rast и JavaScript.

Более 320 учащихся  поступили «на бюджет» в ВУЗы Москвы: Школа Анализа Данных Яндекса, ВШЭ, МГТУ и МЭИ и т.д.. Опыт преподавателя по математике для абитуриентов более 20 лет. Занятия ведутся по Google Hangout и локально в Москве м. Китай-город. Speaks to English.

Запись на занятия

Ваше сообщение отправлено